Proof nets and the instantiation overflow property
نویسنده
چکیده
Instantiation overflow is the property of those second order types for which all instances of full comprehension can be deduced from instances of atomic comprehension. In other words, a type has instantiation overflow when one can type, by atomic polymorphism,"expansion terms"which realize instances of the full extraction rule applied to that type. This property was investigated in the case of the types arising from the well-known Russell-Prawitz translation of logical connectives into System F, but is not restricted to such types. Moreover, it can be related to functorial polymorphism, a well-known categorial approach to parametricity in System F. In this paper we investigate the instantiation overflow property by exploiting the representation of derivations by means of linear logic proof nets. We develop a geometric approach to instantiation overflow yielding a deeper understanding of the structure of expansion terms and Russell-Prawitz types. Our main result is a characterization of the class of types of the form $\forall XA$, where $A$ is a simple type, which enjoy the instantiation overflow property, by means of a generalization of Russell-Prawitz types.
منابع مشابه
A NEW PROOF OF THE PERSISTENCE PROPERTY FOR IDEALS IN DEDEKIND RINGS AND PR¨UFER DOMAINS
In this paper, by using elementary tools of commutative algebra,we prove the persistence property for two especial classes of rings. In fact, thispaper has two main sections. In the first main section, we let R be a Dedekindring and I be a proper ideal of R. We prove that if I1, . . . , In are non-zeroproper ideals of R, then Ass1(Ik11 . . . Iknn ) = Ass1(Ik11 ) [ · · · [ Ass1(Iknn )for all k1,...
متن کاملLexicalized Proof-Nets and TAGs
First introduced by [Ret93], pomset linear logic can deal with linguistic aspects by inducing a partial order on words. [LR95] uses this property: it defines modules (or partial proof-nets) which consist in entries for words, describing both the category of the word and its behavior when interacting with other words. Then the natural question of comparing the generative power of such grammars w...
متن کاملFrom Proof nets to the Free *-Autonomous Categories
In the first part of this paper we present a theory of proof nets for full multiplicative linear logic, including the two units. It naturally extends the well-known theory of unit-free multiplicative proof nets. A linking is no longer a set of axiom links but a tree in which the axiom links are subtrees. These trees will be identified according to an equivalence relation based on a simple form ...
متن کاملStrong Normalization of Proof Nets Modulo Structural Congruences
This paper proposes a notion of reduction for the proof nets of Linear Logic modulo an equivalence relation on the contraction links, that essentially amounts to consider the contraction as an associative commutative binary operator that can float freely in and out of proof net boxes. The need for such a system comes, on one side, from the desire to make proof nets an even more parallel syntax ...
متن کاملOn Proof Nets for Multiplicative Linear Logic with Units
In this paper we present a theory of proof nets for full multiplicative linear logic, including the two units. It naturally extends the well-known theory of unit-free multiplicative proof nets. A linking is no longer a set of axiom links but a tree in which the axiom links are subtrees. These trees will be identified according to an equivalence relation based on a simple form of graph rewriting...
متن کامل